Ingenuity Lab Wins Oil Spill Response Science Program of Natural Resource Canada (NRCan)

Oil is a common pollutant in oceans; more than three million metric tons of oil contaminate them every year. The accidental release of crude oil into a body of water by an oil tanker, refinery, storage facility, underwater pipeline, or offshore oil-drilling rig, is an environmental emergency. Depending on location, oil spills can be both hazardous as well as environmentally destructive. Timely cleanup is critical to protecting the integrity of the water, the shoreline, and the creatures that depend on these habitats. Due to increased scrutiny of the oil industry (with regards to its environmental record) the attention has focused on the development of new materials and technologies for removing organic contaminants; including spilled oil from waterways. Since existing methods are not sufficiently robust, nanotechnology has initiated the development of new tools using specifically designed materials suited for separations, such as the removal of crude oil from water.

Ingenuity Lab, a multidisciplinary research initiative based in Alberta, received $1.7 million in project funding for the research and development of an effective alternative for recovering heavy oil spilled in marine environments. IngenuityLab developed nanowire-based multifunctional stimuli-responsive membranes and devices capable of recovering the oil from spills.

This project will focus on the recovery of oil through the development of novel technology and devices using a variety of stimuli-responsive nanomaterials. The fabrication of reinforced membranes for oil-water separation (published in Adv. Mater. Interfaces, 2016, 3: 1600445) uses carbon nanotubes (CNTs), mats, and a few other metal oxide embedded nanowire hybrid membranes. They exhibit the switchable hydrophobic property with the influence of stimuli (UV, heat, electric, etc.). The focus of using the membranes is to develop a pilot facility for separating the oil out of spills to clean the environment while recovering the valuable oils.